Apamin-sensitive conductance mediates the K(+) current response during chemical ischemia in CA3 pyramidal cells.

نویسندگان

  • M Tanabe
  • M Mori
  • B H Gähwiler
  • U Gerber
چکیده

Pyramidal cells typically respond to ischemia with initial transient hyperpolarization, which may represent a neuroprotective response. To identify the conductance underlying this hyperpolarization in CA3 pyramidal neurons of rat hippocampal organotypic slice cultures, recordings were obtained using the single-electrode voltage-clamp technique. Brief chemical ischemia (2 mM 2-deoxyglucose and 3 mM NaN(3), for 4 min) induced a response mediated by an increase in K(+) conductance. This current was blocked by intracellular application of the Ca(2+) chelator, bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid (BAPTA), reduced with low external [Ca(2+)], and inhibited by a selective L-type Ca(2+) channel inhibitor, isradipine, consistent with the activation of a Ca(2+)-dependent K(+) conductance. Experiments with charybdotoxin (10 nM) and tetraethylammonium (TEA; 1 mM), or with the protein kinase C activator, phorbol 12,13-diacetate (PDAc; 3 microM), ruled out an involvement of a large conductance-type or an apamin-insensitive small conductance, respectively. In the presence of apamin (1 microM), however, the outward current was significantly reduced. These results demonstrate that in rat hippocampal CA3 pyramidal neurons an apamin-sensitive Ca(2+)-dependent K(+) conductance is activated in response to brief ischemia generating a pronounced outward current.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons.

In hippocampal and other cortical neurons, action potentials are followed by afterhyperpolarizations (AHPs) generated by the activation of small-conductance Ca2+-activated K+ channels (SK channels). By shaping the neuronal firing pattern, these AHPs contribute to the regulation of excitability and to the encoding function of neurons. Here we report that CA1 pyramidal neurons express an AHP curr...

متن کامل

Frequency dependence of CA3 spike phase response arising from h-current properties

The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarization-activated mixed cation current (I h ), which differs between CA3 and CA1 pyramidal neurons. Here, we compared the phase response of these two cell types, as well as their int...

متن کامل

Medium afterhyperpolarization and firing pattern modulation in interneurons of stratum radiatum in the CA3 hippocampal region.

Stratum (st.) radiatum interneurons represent a heterogeneous class of hippocampal cells with as yet poorly characterized physiological properties. Intracellular staining with biocytin, in situ hybridization, and patch-clamp recording have been combined to investigate the morphological and electrophysiological properties of these cells in the CA3 hippocampal region in young rats [postnatal days...

متن کامل

Effect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat

Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...

متن کامل

Group I mGluR activation turns on a voltage-gated inward current in hippocampal pyramidal cells.

A unique property of the group I metabotropic glutamate receptor (mGluR)-induced depolarization in hippocampal cells is that the amplitude of the depolarization is larger when the response is elicited at more depolarized membrane potentials. Our understanding of the conductance mechanism underlying this voltage-dependent response is incomplete. Through the use of current-clamp and single-electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 82 6  شماره 

صفحات  -

تاریخ انتشار 1999